
Supplementary material for
A novel stabilized NS-FEM formulation for anisotropic double porosity media

Qi Zhang1, Ze-Yu Wang1, Zhen-Yu Yin1, and Yin-Fu Jin1,2

1Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, China

2College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China

This supplementary material is based on the following three references.

1. Semnani, S.J., White, J.A., Borja, R.I., 2016. Thermoplasticity and strain localization in transversely
isotropic materials based on anisotropic critical state plasticity. Int. J. Numer. Anal. Meth. Geomech.
40, 2423–2449.

2. Zhao, Y., Semnani, S.J., Yin, Q., Borja, R.I., 2018. On the strength of transversely isotropic rocks. Int.
J. Numer. Anal. Meth. Geomech. 42, 1917–1934.

3. Zhang, Q., 2020. Hydromechanical modeling of solid deformation and fluid flow in the transversely
isotropic fissured rocks. Computers and Geotechnics 128, 103812.

1 Reviewof the anisotropicmodifiedCam-Clay plasticity (AMCC)model
for layered material

The elastic tensor Ce is transversely isotropic due to the existence of the bedding plane, which has the
following expression

Ce = λe1 ⊗ 1 + 2µTI + ae (1 ⊗ M + M ⊗ 1)
+ be M ⊗ M + 2 (µL − µT) (M ⊙ 1 + 1 ⊙ M) ,

(1)

where 1 is the second-order identity tensor, I = δikδjl ei ⊗ ej ⊗ ek ⊗ el is the fourth-order identity tensor,
(A ⊙ B)ijkl = AikBjl , M = n ⊗ n, n is the unit normal vector of the bedding plane, λe, µL, µT , ae, and
be are the material elastic constants 1. The subscript (·)T means in the isotropic plane and subscript (·)L
means perpendicular to this isotropic plane. It is necessary to mention that when n = ez = [0, 0, 1]T , the

1It could be a little bit strange that why the definitions of I and ⊙ are different from the “common” knowledge, i.e., Iijkl =(
δikδjl + δilδjk

)
/2 and (A ⊙ B)ijkl =

(
AikBjl + Ail Bjk

)
/2. These “modified” definitions (major symmetry is preserved) are

enforced to guarantee the related fourth-order tensors are non-singular by using the notation of Section 3. In addition, as long
as we are dealing with symmetric stress and strain tensors, the “modified” definitions would not lead to inconsistencies. There
could be alternative ways that will still work without these “modified” definitions, but we will not discuss them here.
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Voigt form of Ce is given by the following 6 by 6 matrix Ce

Ce =



λe + 2µT λe λe + ae

λe λe + 2µT λe + ae

λe + ae λe + ae λe + 2µ̃
µT

µL
µL

 , (2)

where µ̃ = 2µL − µT + ae + be/2. The generalized bulk modulus K∗ for the drained transversely isotropic
material is given as

K∗ =
1 : Ce : 1

9
= λe +

2
9

µT +
4
9

µL +
2
3

ae +
1
9

be . (3)

The yield function f is given as

f (σ, pc) =
σ : A : σ

2M2 + (a : σ) (a : σ − pc) , (4)

where A = P : (3I − 1 ⊗ 1) : P, and P = cp
1I + cp

2 M ⊙ M + cp
3 (M ⊙ 1 + 1 ⊙ M) /2 is the stress

projection tensor, cp
1 , cp

2 , and cp
3 are the projection constants, a = P : 1/3, M = 6 sin ϕcs/ (3 − sin ϕcs)

is the non-zero slope of the critical state line, ϕcs is the critical state friction angle, pc < 0 is the precon-
solidation pressure. Note when P = I, the yield function would retreat to the standard yield function of
MCC. After specifying the yield function f , the plastic strain increment dϵp = dϵ−dϵe can be calculated
using the associative flow rule as

dϵp = dλ
∂ f
∂σ

= dλ

[
A : σ

M2 + a (2a : σ − pc)

]
, (5)

where dλ ≥ 0 is the plastic scalar multiplier. The last component of this model is the hardening law for
pc, which is given as

dpc =
pc

λp dϵ
p
v , (6)

where dϵ
p
v = Tr (dϵp) and λp < 0 is the plastic compressibility parameter.

2 Return mapping algorithm and algorithmic stress-strain tangent op-
erator

The return mapping algorithm starts by backward Euler integrating plasticity equations (in rate form)
from time tn to tn+1, and a group of coupled equations with unknowns σ, ∆λ, and pc could be obtained

−
(

σold + Ce : ∆ϵ
)
+ Ce :

(
∆λ

∂ f
∂σ

)
+ σ = 0 , (7)

pold
c exp

[
∆λ Tr (∂ f /∂σ)

λp

]
− pc = 0 , (8)

f (σ, pc) = 0 , (9)

where the superscript marks old physical variables, and all the other physical variables are at time tn+1.
The second step of the return mapping algorithm is to check whether plastic deformation could accu-

mulate. First of all, trial solutions are constructed as σtrial = σold + Ce : ∆ϵ and ptrial
c = pold

c . Next, the
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trial solutions are substituted into the yield function f . Finally, if f ≤ 0, then we are in the elastic range
and we don’t need to solve above coupled equations, the Calgo is equal to the Ce, otherwise, we proceed
to the third step.

In the third step, pure Newton’s method is applied to solve above coupled equations simultaneously
provided f > 0. To illustrate this method more efficiently, full matrix/vector notation is adopted, see
Section 3. Following this notation, x ∈ R9, y ∈ R, and z ∈ R are used to represent σ, ∆λ, and pc,
respectively. Also, the originalCe is transformed to symmetric Ce ∈ R9×9, the fourth-order identity tensor
I is transformed to identity matrix I ∈ R9×9, the second-order identity tensor 1 is transformed to I2 ∈ R9,
σtrial is transformed to σtrial ∈ R9, A is transformed to symmetric A ∈ R9×9, and a is transformed to
a ∈ R9. In Newton’s method, the residual vector g ∈ R11 and Hessian matrix J ∈ R11×11 are constructed
for every iteration. Suppose the superscript v with parentheses is used to represent iteration counter
where v = 0 means the initial guess, then for each v, we need to solve following block linear equations

to obtain the Newton’s step
[
δxT, δy, δz

]T and update
[

x(v+1)T
, y(v+1), z(v+1)

]T
=
[

x(v)
T

, y(v), z(v)
]T

+[
δxT, δy, δz

]T for next iteration J(v)11 J(v)12 J(v)13

J(v)21 J(v)22 J(v)23

J(v)31 J(v)32 J(v)33


δx

δy
δz

 =

−g(v)1

−g(v)2

−g(v)3

 , (10)

where g(v)1 ∈ R9, g(v)2 ∈ R, and g(v)3 ∈ R are block vectors of the residual vector g, J(v)11 ∈ R9×9,
J(v)12 ∈ R9×1, J(v)13 ∈ R9×1, J(v)21 ∈ R1×9, J(v)22 ∈ R, J(v)23 ∈ R, J(v)31 ∈ R1×9, J(v)32 ∈ R, and J(v)33 ∈ R are
block matrices of the Hessian matrix J. The expressions for these block elements are given in Section 4.

In the last step of the return mapping algorithm, when the stopping criterion is satisfied, we are ready
to use the updated σ, ∆λ, and pc (same as x(last), y(last), and z(last)) to calculate Calgo in the 9 × 9 matrix
form Calgo. The procedure is given here. First of all, x1 ∈ R9 and x2 ∈ R9 are solved such that they satisfy
following linear equations (18 × 18)(J21 J−1

11 J12 − J22

)
I
(

J21 J−1
11 J13 − J23

)
I(

J31 J−1
11 J12

)
I

(
J31 J−1

11 J13 − J33

)
I

 [x1
x2

]
=


(

J21 J−1
11 Ce

)T(
J31 J−1

11 Ce
)T

 . (11)

As mentioned before, J is evaluated at the termination of the Newton’s method. After obtaining x1 and
x2, Calgo can be calculated easily as

Calgo = J−1
11 Ce − J−1

11 J12xT
1 − J−1

11 J13xT
2 . (12)

It is also necessary to mention that although the analytical formula for Calgo is derived, it is given in the
full 9 × 9 matrix form (Calgo), thus a transformation to the traditional 6 × 6 matrix form is necessary,
please see Section 3 for more details.

As a final note of this section, in Section 5, the complete calculation results of a typical uniaxial strain
point simulation in 3D after 5 incremental loading steps with the same ∆ϵ is provided. Any other return
mapping algorithms should be able to reproduce exactly the same results before they are used in real
problems.

3 Full matrix/vector notation

In this notation, the second-order tensors such as stress and strain are stored in column vectors such
as x ∈ R9, and the fourth-order tensors are stored in matrices such as C ∈ R9×9, thus the transformation
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rule needs to be stated, i.e., the correspondence α ↔ ij and β ↔ kl where α, β = 1, 2, . . . , 9 and i, j, k, l =
1, 2, 3, see following Table 1. Given a 9 × 9 stiffness matrix C, the aim is to output the equivalent 6 × 6

Table 1: Transformation rule.

Vector indices α and β 1 2 3 4 5 6 7 8 9

Tensor index pairs ij and kl 11 21 31 12 22 32 13 23 33

stiffness matrix Ĉ. To accomplish that, a matrix E ∈ R9×6 is defined as follows

E =
[
e1 e5 e9 (e2 + e4) /2 (e3 + e7) /2 (e6 + e8) /2

]
, (13)

where ei ∈ R9 for i = 1, 2, . . . , 9 are unit vectors in the 9 dimensional space, and ei means that only the ith

component is 1, all the other components are 0. Next we do the matrix multiplication and obtain B = CE
that is also a 9 × 6 matrix. Let us rewrite B using row representations bj ∈ R6 for j = 1, 2, . . . , 9, now Ĉ
is represented as

Ĉ =



bT
1

bT
5

bT
9

bT
4

bT
7

bT
8

 , (14)

which is a 6 × 6 matrix. Here the default order of the Voigt notation is 11, 22, 33, 12, 13, 23. In Cartesian
coordinate system, the order is described as xx, yy, zz, xy, xz, yz. It is also important to mention that
above procedure only applies to the stiffness matrix. For compliance matrix, please drop the “/2” in the
first equation, and multiply the last three rows of Ĉ in the second equation by 2.

4 Residual vector andHessianmatrix for the returnmapping algorithm

The following expressions are used in the Eq. (10)

g(v)1 = x(v) + y(v)Ce

[
Ax(v)

M2 + a
(

2aTx(v) − z(v)
)]

− σtrial , (15)

g(v)2 = pold
c exp

[
y(v)

λp IT
2

(
Ax(v)

M2 + a
(

2aTx(v) − z(v)
))]

− z(v) , (16)

g(v)3 =
x(v)

T
Ax(v)

2M2 + aTx(v)
(

aTx(v) − z(v)
)

, (17)

J(v)11 = I + y(v)Ce
(

A
M2 + 2aaT

)
, (18)

J(v)12 = Ce

[
Ax(v)

M2 + a
(

2aTx(v) − z(v)
)]

, (19)

J(v)13 = −y(v)Cea , (20)
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J(v)21 =
y(v)pold

c
λp exp

[
y(v)

λp IT
2

(
Ax(v)

M2 + a
(

2aTx(v) − z(v)
))]

IT
2

(
A

M2 + 2aaT
)

, (21)

J(v)22 =
pold

c
λp exp

[
y(v)

λp IT
2

(
Ax(v)

M2 + a
(

2aTx(v) − z(v)
))]

IT
2

[
Ax(v)

M2 + a
(

2aTx(v) − z(v)
)]

, (22)

J(v)23 = −y(v)pold
c

λp exp

[
y(v)

λp IT
2

(
Ax(v)

M2 + a
(

2aTx(v) − z(v)
))]

IT
2 a − 1 , (23)

J(v)31 =

[
Ax(v)

M2 + a
(

2aTx(v) − z(v)
)]T

, (24)

J(v)32 = 0 , (25)

J(v)33 = −aTx(v) . (26)

5 Benchmark strain point simulation

In this strain point simulation, we assume a = P : 1/3 and following material parameters that are
similar to those of Tournemire shale: λe = 4270 MPa, µT = 9360 MPa, µL = 6510 MPa, ae = −1870
MPa, be = 5420 MPa, M = 1.07, λp = −0.0026, cp

1 = 0.7, cp
2 = −0.36, and cp

3 = 0.6. The bedding plane

angle is π/3 in xOy plane, which leads to n =
[
−
√

3/2, 1/2, 0
]T

and following elastic stiffness matrix

Ĉe ∈ R6×6 (the default unit is MPa)

Ĉe =



14683.75 3416.25 2867.50 1517.71 0 0
3416.25 19543.75 3802.50 2691.17 0 0
2867.50 3802.50 22990.00 809.73 0 0
1517.71 2691.17 809.73 7526.25 0 0

0 0 0 0 7222.50 1234.09
0 0 0 0 1234.09 8647.50

 . (27)

For the stress history, the initial pc is −40 MPa. The loading procedures are described as follows. First of
all, the material is subject to an isotropic compression of−10 MPa, which leads to a non-zero initial strain,
i.e., ϵ0 ̸= 0. Next, we prescribe the same strain increment ∆ϵ at each step, and repeat it for 5 times. The
∆ϵ is given as

∆ϵ =

0 0 0
0 −0.001 0
0 0 0

 . (28)

That is to say, only axial deformation in the y-direction is allowed. As a result, only the first step is an
elastic step and the other four steps are plastic steps. For benchmark verification, the final values of pc, ϵ,
σ, and Ĉalgo ∈ R6×6 after 5 steps are provided here (the default unit is MPa except for ϵ)

pc = −50.7379 , (29)

ϵ = ϵ0 + 5∆ϵ = 10−3 ×

−0.55858 0.14330 0
0.14330 −5.39311 0

0 0 −0.31038

 , (30)
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σ =

−35.87171 −10.03319 0
−10.03319 −68.64135 0

0 0 −39.60607

 , (31)

Ĉalgo =



10992.87 4912.10 3186.54 1191.42 0 0
6238.00 7999.32 6613.18 883.05 0 0
3134.83 5692.87 17526.77 895.95 0 0
1384.35 1290.07 1013.99 4991.39 0 0

0 0 0 0 4786.39 1097.03
0 0 0 0 1097.03 6053.13

 . (32)

Here Ĉalgo is not symmetric albeit the flow rule is associative. This is because of the form of the incremental
hardening law Eq. (8). In addition, here the order of the Voigt notation is xx, yy, zz, xy, xz, yz.

6 Coordinate transformation of the stiffness matrix

For a vertically transversely isotropic (VTI) material whose plane of isotropy is the xOy plane, the
stress-strain relation is given as:



σx
σy
σz
σxy
σxz
σyz


local,TTI

=



1
Eh

− νhh
Eh

− νvh
Ev

− νhh
Eh

1
Eh

− νvh
Ev

− νhv
Eh

− νhv
Eh

1
Ev

2(1+νhh)
Eh

1
Gvh

1
Gvh



−1

local,TTI



ϵx
ϵy
ϵz

2ϵxy
2ϵxz
2ϵyz


local,TTI

, (33)

Note that the above representation depends on the ordering of shear, here in assumed as “xy, xz, yz”. Now
for a tilted transversely isotropic (TTI) material, Eq. (33) only holds in the local coordinate system. The
basis vectors of this local coordinate system are assumed to be {e′1, e′2, e′3}. By convention, “1” means x in
local system or global system, “2” means y, and “3” means z. Of course, we know the normal vector of the
isotropy plane is e′3. The global coordinate system has basis vectors {e1, e2, e3}. The stiffness matrix in
Eq. (33) will be denoted as M ′. The relation between two groups of basis vectors is given by an orthogonal
matrix Q:

e′1 = Q11e1 + Q21e2 + Q31e3 , (34)

e′2 = Q12e1 + Q22e2 + Q32e3 , (35)

e′3 = Q13e1 + Q23e2 + Q33e3 , (36)

where Qij is exactly the element of row i and column j of Q:

Q =

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 . (37)

The previous three equations can also be written as (note that the bold-faced e is NOT a scalar!)

[
e′1 e′2 e′3

]
=
[
e1 e2 e3

] Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 . (38)
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Briefly speaking, the ith column of Q is just the representation of e′i in {e1, e2, e3} coordinate system. Now
we are ready to get the stiffness matrix M in the global coordinate system. First of all, we rewrite all the
elements of Q in terms of ℓ1 to n3:

QT =

Q11 Q21 Q31
Q12 Q22 Q32
Q13 Q23 Q33

 =

ℓ1 m1 n1
ℓ2 m2 n2
ℓ3 m3 n3

 . (39)

Then we define the matrix R as:

R =



ℓ2
1 m2

1 n2
1 ℓ1m1 n1ℓ1 m1n1

ℓ2
2 m2

2 n2
2 ℓ2m2 n2ℓ2 m2n2

ℓ2
3 m2

3 n2
3 ℓ3m3 n3ℓ3 m3n3

2ℓ1ℓ2 2m1m2 2n1n2 ℓ1m2 + ℓ2m1 n1ℓ2 + n2ℓ1 m1n2 + m2n1
2ℓ3ℓ1 2m3m1 2n3n1 ℓ3m1 + ℓ1m3 n3ℓ1 + n1ℓ3 m3n1 + m1n3
2ℓ2ℓ3 2m2m3 2n2n3 ℓ2m3 + ℓ3m2 n2ℓ3 + n3ℓ2 m2n3 + m3n2

 . (40)

So:
M = RT M ′R . (41)

Again, this matrix R is a little bit different from that in Xu et al. (2021), and this is also due to the ordering of
shear, here we assume “xy, xz, yz”. There is one more interesting property of R, which is (see off-diagonal
3 × 3 blocks):

R−T =



ℓ2
1 m2

1 n2
1 2ℓ1m1 2n1ℓ1 2m1n1

ℓ2
2 m2

2 n2
2 2ℓ2m2 2n2ℓ2 2m2n2

ℓ2
3 m2

3 n2
3 2ℓ3m3 2n3ℓ3 2m3n3

ℓ1ℓ2 m1m2 n1n2 ℓ1m2 + ℓ2m1 n1ℓ2 + n2ℓ1 m1n2 + m2n1
ℓ3ℓ1 m3m1 n3n1 ℓ3m1 + ℓ1m3 n3ℓ1 + n1ℓ3 m3n1 + m1n3
ℓ2ℓ3 m2m3 n2n3 ℓ2m3 + ℓ3m2 n2ℓ3 + n3ℓ2 m2n3 + m3n2

 . (42)

Finally, as an aside, we recall the vectorial transformation law and tensorial transformation law (◦̃
implies along the directions {e′1, e′2, e′3}):

[ũ] = [Q]T[u] , (43)

[u] = [Q][ũ] , (44)

[Ã] = [Q]T[A][Q] , (45)

[A] = [Q][Ã][Q]T , (46)

Ãi1i2...in = Qj1i1 Qj2i2 . . . Qjnin Aj1 j2 ...jn . (47)

7 Simulation code availability statement

We have made our code publicly available from this GitHub page under the Releases menu. Please
remember to cite the corresponding paper if you use any of these codes for research or industrial purposes.
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